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Abstract 

Environmental Kuznets Curve depicts the long-term relationship between pollution and 

economic growth. It hypothesizes that during the initial stages of economic growth 

environmental quality will deteriorate, then, after reaching some turning point, it will improve 

as the economy grows. In the past decade, lots of empirical literature provided both supports 

and criticism to this hypothesis. However, as we know from econometrics, when data contain 

stochastic trends, the conclusions drawn from such analysis might be meaningless. In this 

paper, we test the stationarities of a number of key variables used in such analyses using a panel 

data set for 50 countries over 50 years. The tests with different null hypothesis find that the data 

are stochastically trending in the time-series dimension. Given this, the regressions and 

interpretation of pollution-growth models should be interpreted with care. Further tests on 

cointegration of appropriate model are required.  
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1. INTRODUCTION 

In 1991, Grossman and Krueger presented their pioneering paper addressing the long-

term relationship between global pollution and economic growth.1 Based on cross-

sectional data for 42 countries, they found an “inverted-U” shaped relationship between a 

variety of indicators of environmental pollution or resource depletion and the level of per 

capita income, showing that pollution is expected to increase considerably during the first 

stage of economic development, but then, after reaching a peak (or “turning point”), it 

declines with higher per capita GDP. Given its similarity to the relationship between 

income inequality and economy growth advocated by Kuznets in 1955, this model is 

called an Environmental Kuznets Curve (EKC). 

In the past decade, great efforts have been put into testing the EKC hypothesis by 

applying different models (linear, parametric, semi-parametric, non-parametric and 

fuzzy), analyzing various pollutants (SO2, CO2, NH4, etc.) and using various types of data 

(time series, cross-section and panel). Yet, the exact form of the model remains 

inconclusive and the results are mixed. 

Not until recently, the classical regression analysis assumed that all the variables 

involved were stationary. However, Nelson and Plosser (1982) pointed out that most of 

the macroeconomic data are random walks. Appropriate methods of regression depend on 

how the variables are integrated. In some cases, the residual from a regression of 

integrated variables is also integrated. This violates the assumptions of classical 

regression model that the residual is independently identically distributed. Therefore, the 

distribution of the regression parameters is highly non-standard. Figure 1 illustrates the 

problem that arises. Two variables x and y are both time series: y has been smoothly 

increasing over 50 years, while x increases sharply in the first 30 years, then after a 

sudden drop, it oscillates around a certain level in the following decades. A model of 

y=α+βx+ε is estimated, with the “dotted” curve depicting the pattern of the residuals. It 

                                                 
1 The paper named Environmental Impacts of a North American Free Trade Agreement was first presented in the 
Conference on the U.S. – Mexico Free Trade Agreement in 1991, and was published as NBER working paper (No. 
3914). In 1993, it was collected in The US-Mexico Free Trade Agreement (Cambridge Mass, MIT Press). Later, this 
paper was expanded upon in Grossman and Krueger (1995), which is a milestone in EKC research. 
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is obviously that the residual is not white noise. The regression and interpretation of the 

model is “spurious”. 

This paper tests the stationarity of a number of key variables using a global panel data 

set of carbon dioxide and economic growth of 50 countries over 50 years. Both individual 

series and panel data are tested. Different null hypotheses are also applied to ensure the 

power of tests. All the tests show that the data are integrated in the time-series dimension. 

This implies that further cointegration tests are required before one can properly 

undertake a regression analysis. 

This paper is organized in the following way: Section 2 presents a literature review of 

both the theoretical and the empirical studies on the Environmental Kuznets Curve. 

Section 3 introduces the data and executes the unit roots test to the variables. Section 4 

discusses some cointegration tests; in Section 5, conclusion is drawn. 

 

2. LITERATURE REVIEW 

At the beginning of 1990s, environmentalists voiced their concerns about a potential 

North American Free Trade Agreement (NAFTA). They argued that the expansion of 

markets and economic activities, the change of composition of the economy and the 

decrease of US regulatory standards on environment might lead to more pollution and 

faster depletion of scarce natural resources. In 1993, Grossman and Krueger presented an 

empirical paper on the conference of the U.S.–Mexico Free Trade Agreement, illustrating 

how a reduction in trade barriers generally affects the environment by expanding the 

scale, altering the composition and changing in the technology of the economy. 

Grossman and Kruger (1993) constitute the seminal work on the Environmental Kuznets 

Curve (EKC). They analyzed data for SO2, suspended particulate matter (SPM) and 

particulates (smoke) for 1977, 1982 and 1988. The data were from Global Environmental 

Monitoring System (GEMS), which monitors air quality in urban areas throughout the 

world. Grossman and Kruger did regressions on both random and fixed effects models 
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using a cubic function form. A linear time trend, a variable of openness and dummy 

variables of location were also included. They found that concentrations of two of the 

three pollutants, SO2 and particulates, rise with per capita GDP at low levels of national 

income, and then fall as per capita GDP grows. The turning points for each of them are 

$4,119 (1985 U.S. dollars) and $5,000 (1985 U.S. dollars). The estimated curves imply 

an inverted U shaped relationship. Meanwhile, the SPM was found to fall in response to 

increases in per capita GDP at low levels of economic development. Then after GDP per 

capita reaches $9,000, economic growth has no further effect on the concentration of 

SPM. Grossman and Kruger argue that economic growth tends to alleviate pollution 

problems once a country’s per capita income reaches certain level ($4,000 to $5,000 1985 

U.S. dollars in this paper). They also predict that, because the free trade agreement with 

the U.S. and Canada would improve the economic growth of Mexico, whose per capita 

GDP was already $5,000 (1985 US dollars) at that time, this country would intensify its 

efforts to alleviate its environmental problems, so that it pollution level would decrease 

from that point on.  

In the following decades, many attempts have been made to evaluate the impact of 

economic growth on environmental quality. The literature is both theoretical and 

empirical. 

 

2.1 Theoretical Literature Review 

Theoretical explanations as to why environmental degradation should first increase and 

then decline with income have focused on three of factors: the effects of scale and 

structure of the economy; the link between the demand for environmental quality and 

income; and policies and regulations related to environmental degradation. 

As income grows, the scale of an economy tends to become larger. As Grossman (1995) 

suggested, a developing society requires increasing output, therefore more inputs and 

more natural resources. In addition, more output also implies increased wastes and 
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emissions as a by-product of the economic activity, which worsens the environmental 

quality. This is the so-called scale effect. 

The structure of the economy also tends to change with the development of the economy. 

As Panayotou (1993) points out, environmental degradation tends to increase as the 

structure of the economy changes from rural to urban, from agricultural to industrial. But 

it starts falling with the second structural change from energy-intensive heavy industry to 

services and technology-intensive industry. Finally, technological progress leads to the 

substitution of obsolete and dirty technologies with cleaner ones, which also improves the 

quality of the environment. This is the technology effect. When the technology effect 

dominates the scale effect, the pollutant level would increase during the period of first 

structural change of economy and then decrease during the second stage of structural 

change. Therefore the inverted U curve comes into being. 

Some of the theoretical literature has focused on household preferences environmental 

quality with the pollutant level. If these preferences following the assumption that the 

damage from extra pollution grows as income grows, then such preferences can be 

illustrated as an important factor of bending back down of the pollution-growth curve. 

McConnell (1997) studies the combined effects of preferences; increasing costs of 

pollution control and the declining value of extra consumption as per capita incomes 

grow. Applying a method of non-market valuation, McConnell shows that a high-income 

elasticity of demand for environmental quality is neither necessary nor sufficient for the 

EKC. Besides preferences, the assimilative capacity of the environment and the cost of 

abatement are also important influences on the pollution-growth relationship. 

Others argue that the method of decomposing economic development into its 

components, and study the bilateral relationship between pollution and each component is 

only partially right. As Panayotou (1997) points out, “… they focus only on the scale and 

industrialization effects and ignore the abatement effect of higher incomes.” (P.429) In 

the same paper, the author maintains that the findings from models only including 

economic growth variables could lead to the unintended and misleading interpretation 

that some countries can grow out of their environmental problems without the 
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establishment of conscious environmental policies. By taking explicit policy determinants 

into consideration, Panayotou (1997) finds that better policies, such as more secure 

property rights and better enforcement of contracts and effective environmental 

regulations, can help flatten the EKC and reduce the environmental price of economic 

growth. 

While some economists seek to explain the explanation of the inverted-U growth-

pollution relationship, others cast doubt on the shape of the curve itself. Dasgupta et al. 

(2002) examine different EKC scenarios in the recent literature and provide theoretical 

explanations for different views. Some research shows that the pollution-growth curve 

rises asymptotically to same maximum pollution level, never coming down again. The 

EKC curves of some countries or pollutants maintain a high level while others maintain a 

low level of per capita pollutants. The cumulative effect is inverted U shaped, because the 

EKC is just a snapshot of a dynamic process. This is the so-called “race-to-the-bottom” 

curve. Pessimists argue that, even if certain pollutants are reduced as income increases, 

industrial society continuously creates new, unregulated and potentially toxic pollutants. 

Then the overall environmental risks from these new pollutants may continue to grow 

even if some sources of pollution are reduced. Holtz-Eakin and Selden (1995) named it 

the “new toxics” phenomenon. Meanwhile, some recent research has fostered an 

optimistic critique of the relationship. They suggest that the level of the curve is actually 

dropping and shifting to the left, as growth generates less pollution in the early stages of 

industrialization and pollution begins falling at lower income levels because of the 

technology overflow and economy globalization. In a comprehensive survey by Stern 

(1996), the author points out that only a subset of pollutants can apply the model of 

inverted-U curve, such as sulfur dioxide and suspended particulates. 

 

2.2 Empirical Literature Review—Early Research 

Early empirical research (1993-1996) is focused on testing different pollutant indicators 

of different countries with simple linear parametric model, trying to see if EKC is a 
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universal relationship between pollution and growth. Shafik and Bandyopadhyay (1992), 

Selden and Song (1994), Panayotou (1993), Cropper and Griffiths (1994), and Meyer et 

al. (2003) are examples of such literature. 

Shafik and Bandyopadhyay (1992) estimated EKCs for nine different indicators from a 

panel data set: lack of clean water, lack of urban sanitation, ambient levels of suspended 

particulate matter, ambient sulfur dioxides, change in forest area, dissolved oxygen in 

rivers, faecal coliforms in rivers, municipal waste per capita, and carbon emissions per 

capita (converted from CO2 emissions). Data coverage and sources varied between the 

different indicators. 

They used three different functional forms: log-linear, log-quadratic and logarithmic 

cubic polynomial. The Ordinary Least Square (OLS) estimations were applied. The 

dependent variables included different forms of GDP per capita in purchasing power 

parity (PPP) dollars and a time trend and site-related variables. In each case, the 

dependent variable has not been transformed. Shafik and Bandyopadhyay also carried out 

a number of additional regressions adding various policy variables such as trade 

orientation and electricity prices. The results for these were mixed. 

Some of their results are as follows: Lack of clean water and lack of urban sanitation 

decrease monotonically with increasing income. The indicator of deforestation is 

insignificantly related to the income terms. River quality tends to be worsening with 

increasing income. SO2 and SPM conform to the EKC hypothesis. The turning points for 

both pollutants are found for income levels of between $3,000 and $4,000. Finally, both 

municipal waste and carbon emissions per capita increase unambiguously with rising 

income.  

Selden and Song (1994) estimated EKCs for four pollutants: SO2, NOx, SPM and CO 

using longitudinal data from World Resources (1991). They focus on the model 

expressed as: ititdititit dyym εββββ ++++= 2
210 , and apply different control variables as 

dit including population density, different period dummies. One of the regressors, 

population density, is significant in their analysis, showing that in countries with low 
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population densities there will be less pressure to adopt stringent environmental standards 

and emissions due to transportation will be higher. They find substantial support for the 

inverted U hypothesis, thereby providing independent confirmation of previous findings. 

The estimated turning points are all very high compared to other studies: SO2, $8,709; 

NOx, $11,217; SPM, $10,289; and CO, $5,963.  

Panayotou (1993) estimated EKCs for SO2, NOx, SPM and deforestation. His study 

employs only cross sectional data and GDP is in nominal 1985 US dollars. The data on 

emission for developing countries were estimated from fuel use and fuel mix data. 

Deforestation was measured as the mean annual rate of deforestation in the mid 1980s. 

There are 68 counties in the deforestation sample and 54 in the pollution sample.  

The models for the three pollutants are in logarithmic forms with quadratics in income 

per capita. For deforestation Panayotou uses a translog function in population density, a 

dummy variable for tropical countries and income per capita. All the estimated curves are 

inverted Us. In his results, the turning point for deforestation is $823 per capita. 

Deforestation rates were significantly greater in tropical countries. Deforestation was also 

higher in countries with higher population densities. For SO2 emissions the turning point 

is around $3,000 per capita, for NOx around $5,500 per capita, and for SPM around 

$4,500 per capita.  

Cropper and Griffiths (1994) estimate three regional (Africa, Latin America and Asia) 

EKCs for deforestation using panel data for 64 countries over a thirty-year period. The 

dependent variable is the negative of the percentage change in forest area between two 

years. The independent variables in each regression are rural population density, 

percentage change in population, timber price, per capita GDP, percentage change in per 

capita GDP in PPP dollars, square of per capita GDP, a dummy variable for each country, 

and a time trend. Neither the population growth rate nor the time trend was significant in 

either Africa or Latin America, and the price of tropical logs was insignificant, while in 

the Asian regression were significant. There two conclusions are drawn from Cropper 

and Griffiths’ paper: first, that a hump-shaped relationship exist between per capita 

income and deforestation; second, rural population density shifts this relationship upward 
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in Africa. For Africa the turning point of the hump-shape is $4,760, and for Latin 

America $5,420. For most the observations of Cropper and Griffiths (1994) fall to the left 

of the peak, the authors conclude that economic growth will clearly not solve the problem 

of deforestation. 

Meyer et al. (2003) examined the effects of economics, institutional and social capital 

variables on deforestation across 117 countries. The dependent variable is the rate of 

deforestation from 1990 to 2000. The economic regressors are PPP weighted GDP per 

capita, its square, forest product exports and agricultural output; the institutional 

regressors include size of government, the freedom to use alternative currencies, legal 

structure and property rights and the freedom of exchange in capital and financial 

markets. The control of corruption index and literacy are social capital regressors. While 

proportion of rural population is included as other regressor. Two OLS regression models 

are estimated. In the first one, the deforestation was regressed against only GDP and 

GDP-squared. The negative sign on the per capita GDP and positive sign on GDP-

squared underlie a U shaped curve instead of a traditional inverted-U. Meyer et al. (2003) 

explained this curve as: poor countries have high deforestation rates because forestation 

is used as a useful tool in development. The rates continuously decrease when other 

industries are developing. After certain point, the countries begin to afforest. The rate of 

forestation keep increasing until peaks at some $19,500 per capita, and after which rate 

declines to zero.   In this sense, their research supports EKC. The second model, which 

includes other regressors, discloses a greater government involvement and freedom of 

financial markets may have positive effects on forest protection. 

 

2.3 Empirical Literature Review — Latest Research 

Compared with empirical studies in the early stage, the latest research pays more 

attention to the functional form and econometric properties of the data in the study. Giles 

and Mosk (2003), Harbaugh et al. (2000), and Perman and Stern (2003) are the examples. 
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Giles and Mosk (2003) examine a very long-run relationship between income and 

emissions of CH4 in New Zealand over the period of 1895 to 1996. They apply standard 

parametric regression, nonparametric regression and nonlinear regression based on fuzzy 

clustering analysis. The results from different methods are not the same. Based on 

traditional quadratic and cubic functional forms and nonparametric kernel regression, 

Giles and Mosk find an inverted U curve with single maximum at the levels of $7,000 -

$7,500. With “fuzzy regression” methods, they find an M shaped curve. 

Harbaugh et al (2000) test the sensitivity of the pollution-income relationship to 

additional covariates, and changes in the nations, cities and years sampled. The pollutant 

is SO2. The functional form is cubic in lagged values of GDP. The estimation results are 

highly sensitive to the choice of these variables and functional forms. The EKC 

hypothesis is rejected. 

Perman and Stern (2003) is the first paper that raises the point that empirical work on 

EKC using time series or panel data should consider the issue of non-stationarity.2 They 

carry out both individual time-series unit root tests by Dickey-Fuller (1973) and panel 

data tests by Levin and Lin (1993) and by Im et al. (2003) for SO2 and GDP for 74 

countries over a span of 31 years. They find that the null hypothesis of unit root could be 

rejected in only a fraction of all the countries no matter whether the data are transformed 

into logarithm or remained unchanged. Then applying Levin and Lin (1993) panel unit 

root tests, Perman and Stern find support for unit root in both variables. The further tests 

following Im et al. (2003) also confirm this conclusion. 

Following tests of cointegration provide support for the hypothesis that there is 

cointegration between emissions per capita and income per capita for each country in the 

panel. Though the error correction model (ECM) produces an inverted U curve, the 

heteroscedasticity among the countries shows that the EKC is a problematic concept, at 

least in the case of sulfur emissions. 

                                                 
2 The issue of non-stationary in the context of Kuznets Curve (inequality-income relationship) has been analyzed in 
Jacobsen and Giles (1998), who used time-series data from the United States.  
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Perman and Stern (2003) make an important contribution to the empirical EKC research, 

but there are a few issues worth mentioning about their analysis. The issue that needs to 

be mentioned here is about Levin and Lin’s (LL for short thereafter) alternative 

hypothesis. It is more restrictive than that for the more recent panel unit root tests like 

that of Im et al. (2003) (IPS for short thereafter). Also, a Monte Carlo study undertaken 

by Im et al. show that for finite samples, their test exhibits better performance compared 

to LL’s test. While Perman and Stern use IPS test as well, this test does not seem 

appropriate for their dataset that has 31 periods each for 73 countries. The asymptotic in 

IPS test requires that the time dimension T to go to infinity, followed by the unit 

dimension N to go to infinity, i.e. T and N go to infinity sequentially. This requirement is 

not met at all for Perman and Sterns’ data. 

 

2.4 Literature Review on CO2 Emission-Economic Growth Relationship 

Carbon dioxide (CO2) is one of the gases in the atmosphere, being uniformly distributed 

over the earth’s surface at a concentration of about 0.033% or 330 ppm. Carbon dioxide 

is released into the atmosphere when carbon-containing fossil fuels such as oil, natural 

gas and coal are burned. As a result of the increasing worldwide consumption of fossil 

fuels, the amount of CO2 in the atmosphere has increased over the past century, now 

rising at a rate of about 1 ppm per year. Major changes in global climate could result 

from a continued increase in CO2 concentrations. According to the International Panel on 

Climate Control (IPCC), CO2 accounts for more than half of global warming.  

Several econometric studies have estimated the relation between CO2 emissions per 

capita and per capita GDP growth using cross-country, and often unbalanced, panel data. 

Shafik (1994), Holtz-Eakin and Selden (1995), Sengupta(1996), Taskin and Zaim (2000), 

and Dijkgraaf and Vollebergh (2001) are examples of such research. 

Most of the literature on CO2 employs data from Global, Regional, and National Fossil 

Fuel CO2 Emissions dataset created by the Carbon Dioxide Information Analysis Center 

of Oak Ridge National Laboratory. The pollutant data are derived primarily from energy 
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statistics published by the United Nations, using the methods of Marland and Rotty 

(1984). The data indicate CO2 emissions in each time period instead of the CO2 stock in 

the air. However, the authors of various studies reach conflicting conclusions about the 

CO2-GDP relationship from almost the same dataset.  

CO2 emissions are one of the eight pollutants analyzed by Shafik (1994). The data cover 

1960 to 1989, and vary from 118 countries to 153. Shafik introduces four determinants of 

environmental quality into the model: (1) endowment such as climate and location, (2) 

per capita income, (3) exogenous factors such as technology, and (4) social policies. CO2 

emissions are regressed on various explanatory variables using simple log-linear, log-

quadratic and log-cubic function forms. Shafik finds that per capita CO2 emissions 

increase monotonically with income growth.  

In contrast, Holtz-Eakin and Selden (1995) suggest a diminishing marginal effect of the 

emission of carbon dioxide as GDP per capita rises, but this effect is not significant. 

There are two other important conclusions drawn from their paper. One is that global 

carbon dioxide emissions grow at 1.8 percent per year for the foreseeable future, a result 

exogenous to the average output growth. The other is that the country-specific effect is 

important in the CO2-GDP relationship. It could affect the interpretation of the 

econometric results. In their cross-sectional analysis, they find that industrialized 

countries yield higher emission–economic growth elasticities, while developing countries 

have lower elasticities. These results indicate a sensitivity to which countries are included 

in the modeling effort and reveal a potential for important differences in individual 

country behavior.  

Sengupta (1996) models the CO2-GDP relation for a mixed subset of 16 countries that 

includes both developed and developing countries. His models generate a much lower 

income turning point of $8,740 in PPP 1985 US dollars, but also find the tendency for 

positive emissions elasticities beyond $15,300. The N-shaped curve indicates that 

emissions decline over a mid-range of incomes before re-establishing an upward trend 

with GDP growth.  
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Taskin and Zaim (2000) also obtain their CO2 emission data from the Carbon Dioxide 

Information Analysis Center. Following a suggestion by Holtz-Eakin and Selden (1995), 

they first construct environmental efficiency indexes for a group of high-income and low- 

and middle-income countries between the years 1975 and 1990 using a method proposed 

by Fare et al. (1989). Then they establish the link between environmental efficiency and 

per capita income using the Nadaraya-Watson kernel estimator where there is no 

requirement for the choice of a particular form for the conditional mean. Finally, by 

comparing the fitness of linear, quadratic and cubic models, they determine a cubic 

functional form for the relationship between environmental efficiency and GDP per 

capita, which has approximately a third-order polynomial shape indicating improving 

environmental performance at the initial phases of growth, which is followed by a phase 

of deterioration and then a further improvement once a critical level of per capita GDP is 

reached. This is actually another representation of the pollution-income relationship that 

mainly holds for countries at income levels of $5,000 and over. 

Dijkgraaf and Vollebergh(2001) cast doubt on empirical EKC results based on a data set 

for OECD countries on CO2 emissions for the period 1960-1997. They found that the 

crucial assumption of homogeneity of the pattern of the data across countries is 

problematic. Even within such a specific data set, where there is a wide overlap of 

observations for different countries at similar income levels, the graphs of carbon 

emission-economic growth relationships in the U.S. and Japan can easily show that a 

pool model for such a relationship is inconsistent. This argument is supported by the 

rejection of the null hypothesis of homogeneous country-specific slopes using LM tests. 

Regressions on the time series of each country indicate that the pollution-development 

relationships in some of the countries are of the inverted-U form, while others are 

monotonically increasing over time. 

Until now, there has been no study on CO2-growth relationship that has explained the 

issue of data non-stationarity. If the time series of CO2 emission and GDP per capita are 

random walk, the residual from the estimation between them might also be integrated. 

Hence the regression is “spurious” and the interpretation to the model is meaningless. In 

this paper, I will exam the degree of integration of the panel data set.  The tests on both 
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individual series and panel set are applied and null of both stationarity and 

nonstationarity are tested. 

 

SECTION 3: DATA AND EMPIRICAL STUDY 

3.1 Data Description. 

The pollutant we analyze in this paper is carbon dioxide. CO2 emissions data also come 

from the Global, Regional, and National Fossil Fuel CO2 Emissions by the Carbon 

Dioxide Information Analysis Center of Oak Ridge National Laboratory. The 

independent variable is Gross Domestic Income, which is expressed in 1996 Purchasing 

Power Parity (PPP) dollars. It is from Penn World Table 6.1 by the Center for 

International Comparisons at the University of Pennsylvania. Carbon dioxide emission 

and income levels are in logarithm so that the regression model provides the emission 

elasticities of income. The data set covers 50 countries for a period of 50 years, from 

1951 to 1999. The list of the countries is provided in Appendix I, while the descriptive 

statistics are found in Table 1.  

 

3.2 Empirical Study 

3.2.1 Unit Root Tests to individual Series. 

In contrast to cross-sectional data, time series data and panel data have some special 

properties, such as the value of a variable at certain period is affected by its lagged 

values. A shock in one period will affect all the following periods. The level of the effect 

is up to the parameters of the lagged terms. If the shock can be absorbed and eventually 

disappear, the series is called stationary and is denoted as I(0); if it causes the series to 

explode, the series is non-stationary. In the simplest case, the series behaves as a random 

walk, which is denoted as I(1). A model based on stationary data can measure a long-term 

relationship across variables. Granger and Newbold (1974) found that, when regressions 
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are based on non-stationary data, estimation by OLS could lead to “spurious regressions”, 

which are represented by high R2 and a low Durbin-Watson statistics. Nelson and Plosser 

(1982) find that a great number of aggregate economic time series exhibit the 

characteristics of a random walk. However, if the linear combination of two or more non-

stationary series is stationary, the series are said to be co-integrated and a long-term 

relationship can still be estimated by applying the series in levels. The formal definitions 

of stationarity, unit root and order of integration are provided in Appendix II. 

We establish the order of integration of each series for each country yit based on Dickey 

and Fuller (1979). We examine four different series for each country: CO2 emission, 

GDP, square of GDP and cube of GDP. The standard specification of a simple 

autoregressive process of degree one (AR(1))is: 

                                 tttt xyy εδρ +′+= −1                                          (1) 

where yt is the series under consideration for a particular country, xt is a vector of 

exogenous variables which may conclude constant, or a constant and trend, εt are 

assumed to be white noise. If 1≥ρ ,yt is a nonstationary series and the variance of yt 

increases with time and approaches infinity. If 1<ρ ,yt is a stationary series. The 

standard Dickey-Fuller test is carried out by estimating Equation (1) after subtracting yt-1 

from both sides of the equation: 

                                   tttt xyy εδα +′+=∆ −1                                             (2) 

where 1−= ρα . The null and alternative hypotheses are then: H0: α=0 and Ha: α<0. A t-

ratio can be used to do the evaluation. However, Dickey and Fuller (1979) show that 

under the null hypothesis, this statistic does not follow the conventional Student’s t-

distribution. Simulated critical values are tabulated in the same paper and complemented 

by MacKinnon (1991, 1996).  

The simple DF test is valid only if the series is an AR(1) process. If the series is 

correlated with higher order lags or is a moving average process of degree q (MA(q)), it 
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can be converted into a AR process with infinite lags, and the assumption of white noise 

disturbances does not hold. The Augmented Dickey-Fuller (ADF) test introduces 

additional p-1 lagged terms to correct such bias. 

                   ∑
=

−− +∆+′+=∆
p

j
tjtjttt yxyy

1
1 εβδα                                     (3) 

Fuller (1987) proves that the asymptotic distribution of the t-ratio for α is independent of 

the number of lagged differences included in the regression, which means the simulated 

critical values can be applied without any further modifications.  

Two practical problems are raised in applying the ADF test. The first one is: What 

exogenous variables should be included? There are three choices: drift only, drift and 

trend, no drift and no trend. One approach would be to use the most general case and run 

a regression with both drift and trend since the other two cases are just special cases of 

such a specification. However, including irrelevant regressors in the regression will 

reduce the power of the test. A more general solution is to choose the exogenous 

variables that describe the data best under both the null and alternative hypotheses. 

The second problem is specifying the level of augmentation p. One handy procedure is to 

assign a maximum augmented level pmax, then check the t-statistic of the coefficient of 

the last differenced term ∆yt-j is significant or not. If it is not significant, then this term is 

deleted, and we test the significance of the last differenced term in the new specification. 

If it is significant, then our level of augmentation is pmax.3 Some econometrics programs 

such as SHAZAM and EViews can choose the lag length automatically. For example, in 

EViews, p lagged difference terms are added to a regression equation. The automatic 

selection methods choose p, which is less than the specified maximum, to minimize one 

of the information criteria.4 The findings of the first procedure with drift, or drift and 

trend, as exogenous variables are listed in Table 2. From this table, we conclude the 

                                                 
3 Another procedure---- ARIMA is suggested by Dolado et al. (1990) and Giles et al. (1992). The augmentation level is 
established by directly examining the autocorrelation and partial autocorrelations of the residuals of the ADF regression 
to ensure that they approximate white noise. If they do not, additional augmentation terms are added. 
4 The information criteria that are used in Eviews are Akaike (AIC), Schwarz (SIC), Hannan-Quinn (HQ), Modified 
AIC, Modified SIC and Modified HQ. 
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following: First, most of the series are a random walk, especially CO2 emissions and 

GDP. This accords with prior studies of air pollution data. Second, some levels of 

integration of CO2 data are sensitive to the model specification of the ADF regression. 

When a trend is included in the model, the t-ratio shows the series is stationary 

(nonstationary), but when the trend is excluded, the series is tested to be nonstationary 

(stationary). This requires a process of eliminating the time trend as an irrelevant 

exogenous variables, which is shown in Table 3. The third, Appendix Table 1 implies 

further tests on all I(1) series to determine if they are I(1) or I(2). In all cases the variables 

are found to be I(1). 

As Kwiatkowski et al. (1991) points out, it is a well-known fact that the standard unit 

root tests fail to reject the null hypothesis of a unit root for many economic time series. 

The classical empirical example is presented in the influential article by Nelson and 

Plosser (1982).  They failed to reject the hypothesis of a unit root in all 14 annual U.S. 

time series but one with both DF test and ADF test. Casting doubts on how informative 

these tests are about whether or not there is a random walk, DeJong and Whiteman 

(1991) applied Bayesian analysis on the same data set. They found only two of the series 

to have stochastic trends. Phillips (1991) used objective ignorance priors in extracting 

posteriors and found support for stochastic trends in five of the series. Some theoretical 

studies also confirm the argument. DeJong et al. (1989) provide evidence that the DF 

tests have low power against stable autoregressive alternatives with roots near unity, and 

Diebold and Rudebusch (1990) show that they also have low power against fractionally 

integrated alternatives. Therefore, the explanation for the common failure to reject a unit 

root is simply that the standard unit root tests are not very powerful against relevant 

alternatives.  

These studies suggest that it would be useful to perform tests of the null hypothesis of 

stationarity as well as tests of the null hypothesis of a unit root. Park and Choi (1988) 

proposed a F test for “superfluous” deterministic trend variables; Rudebusch (1990) 

proposes DF test statistics both on trend-stationary and difference-stationary models. One 

popular testing procedure with stationary null hypothesis is proposed by Kwiatkowski et 

al. (1991), named as KPSS test. It avoids the problem of lacking of a plausible model in 
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which the null of stationarity is naturally framed as a parametric restriction. The null 

hypothesis of KPSS test is trend stationarity which corresponds to the hypothesis that the 

variance of the random walk equals zero. 

The KPSS statistic is based on the residuals from the OLS regression of yt on the 

exogenous variables xt: tty uxy +′= δ . The Lagrange Multiplier statistic is be defined as  

                    2

1

2 ˆ)( σ∑
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=
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t

tSLM                                            (4) 

 where 2σ̂ is the estimate of the error variance and S(t) is a cumulative residual function: 

∑
=

=
t

i
iutS

1

ˆ)( based on the residuals δ̂ˆ ttt xyu ′−= . Table 4 displays the KPSS statistics on 

the series of each country. The interesting finding in this table is that fewer series seem to 

be non-stationary. This is a confusing conclusion. Further study on the panel data as a 

whole is required. 

3.2.2 Unit Root Tests on Panel Data 

In the early 1990s, the econometric research came to have a wide use of panel data, 

which combines a cross-section of individual time-series. Such datasets yield valuable 

information and make the comparisons across units possible. However, the asymptotic 

properties of panel regression analysis have been derived under the assumption that the 

time-series data for each individual in the panel is weakly stationary, which conflicts with 

the fact that a wide range of macroeconomic variables present unit roots.  

As the seminal contribution in this field, Levin and Lin (1993) developed asymptotic 

theory for panel data regression analysis when weak stationarity is violated by the 

presence of a unit root within each individual time-series.  

The structure of the Levin and Lin analysis may be summarized in the following 

equation: 
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titiitiiti yty ,1,, ξρθδα ++++=∆ − , i=1,2,…,N, t=1,2,…, T            (5.1) 

It allows for unit-specific effects ( iα ) to control for country-specific heterogeneity, and 

time-specific effects ( tθ ) to avoid the problem of serial correlation. The time-specific 

effects are taken into account in the panel unit root test by demeaning the data as 

titit yyy −=~  where ty is the average over all countries at a particular point of time.  

The null and alternative hypotheses are: H0: ρi=0 for all i, against HA: ρi=ρ<0 for all i.  

Levin and Lin drew two conclusion from their analysis: first, this procedure yields higher 

power than standard unit-root tests based on individual time series; second, under the 

case when both the time-series and cross-section dimensions of the panel grow arbitrarily 

large (T→∞, N→∞), the panel regression estimators and t-statistics have limiting normal 

distributions; they converge at a faster rate as the number of time periods grows than as 

the number of individuals grows. 

Some important empirical studies were based on Levin and Lin (1992). In 1996, Wu used 

panel data on real exchange rates between the US and eighteen OECD countries from 

1974 to 1993.5 With Levin and Lin’s procedure, he found that the null hypothesis that 

real exchange rates during the post-Bretton Woods period contain a unit root could be 

decisively rejected. He argued that the failure to support the long-run PPP as reported by 

early researchers may result from the low power of standard univariate unit-root tests.  

Further research by Im, Pssaran and Shin relaxed the restrictive assumption made by 

Levin and Lin (1992) that the values of ρi are homogeneous. Therefore the null and 

alternative hypotheses are modified into: H0: ρi=0 for all i, against HA:ρi <0, i=1,2,…,N1, 

ρi =0, i=N1+1,N1+2,…,N. 

                                                 
5 In fact, Wu used monthly data, quarterly data and annual data. 
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Im et al. (2003)6 propose a likelihood test based on the average of DF statistics computed 

for each group in the panel, named t-bar test. The statistic is denoted as: 

      ∑
=

=
N

i
iTNT t

N
t

1

1                                             (6)  

where tiT is the DF statistic of the ith unit in the panel. 

First, the authors assume that the errors of DF regressions are serially uncorrelated. 

Under a setting with T→∞, followed by N→∞, a standardized version of the NTt  statistic 

converges in probability to N(0,1) denoted as: 
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where E(tT) and Var(tT) are the mean and the variance of tiT respectively. 

Or, in a more complicated case, when Ti differs across groups, we have: 
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The values of E(tT) and var(tT) for different Ts are listed in  Im et al (2003, p.60).  

A more general case in which the errors in Equation (1) are serially correlated with 

different serial correlation patterns across groups is considered in the second part of Im et 

al (2003). The ADF(pi) regressions are introduced: 

∑
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−− +∆++=∆
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j
itjtiijtiiiit yyy

1
,1, ερβα , i=1,2,…,N, t=1,2,…,T    (9) 

                                                 
6 This is a substantially revised version of the Department of Applied Economics, University of Cambridge, Working 
Papers Amalgamated Series No. 9526 (1997), University of Cambridge. Therefore, in some literature, it was cited as 
Im et al (1997). 
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t statistics of testing βi=0 are now functions of nuisance parameters ρi=(ρi1, ρi2, …, ρipi)’ 

and pi, that is, tiT=tiT(pi, ρi), and ∑
=

=
N

i
iiiTNT pt

N
t

1
),(1 ρ . When T and N are sufficiently 

large it is possible to develop asymptotically valid tests. One of the practical alternatives 

is carrying out the standardization of the t-bar statistic using the means and variance of 

tiT(pi, 0) evaluated under βi=0. The standardized t-bar statistic under this assumption is: 
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The values of the mean and variance for different values of T and p obtained via 

stochastic simulations with 50,000 replications are given in Im et al. (2003, Table 3). 

Table 5 lists the output of IPS tests on the 4 variables. The pi of each series is for the 

individual ADF tests and shown in Table 2. The statistics of IPS tests show a support for 

the null hypothesis of non-stationarity. 

IPS test is based on ADF test, taking unit root as null hypothesis. Given that in classical 

hypothesis testing, the null hypothesis is supported unless there is strong evidence against 

it, it is quite standard in unit root testing in individual time series case to use two different 

tests with two different null hypotheses to see if the results are robust. One has unit root 

as the null hypothesis (as ADF test) and one that has stationarity as the null hypothesis 

(as in KPSS test). Hadri (2000) proposes a unit root test on panel data whose null 

hypothesis is stationarity. His models are: 

                                             ititit ry ε+=                                      (11.1) 

or                                                       itiitit try εβ ++=                                (11.2) 

where rit is a random walk:  
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                                  ittiit urr += −1, , and t=1,2,…, T  and i=1,2,…,N,             (12) 

both εit  and uit are identical  independently distributed with E[εit]=0,  E[ 2
itε ]= εσ 2 >0, 

E[uit]=0, and E[ 2
itu ]= ≥u

2σ 0. Substitute (12) into the models: 

                                        itiit ery += 0                                  (13.1) 

                                     itiiit etry ++= β0                             (13.2) 

where ∑
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T

t
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ε . Hence, we have E[eit]=0, and  

22),min(][ εσσ += ujsit steeE   i=j, t=s 

2),min( ust σ=             i=j, t≠ s 

=0  i≠ j 

If the series is stationary, then 02 =uσ , otherwise, 02 ≠uσ . Therefore, the null and 

alternative hypothesis of Hadri’s test are: H0: λ=0, against Ha: λ>0, where 2

2

εσ
σλ u= . 

Hadri (2000) proves that for the null of stationary, the statistic of a panel has the 

following limiting distribution: 
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where xML ˆ  is the Lagrange Multiplier statistic of series x. For the null of trend 

stationary, the asymptotic distribution of the statistic is: 
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The result of Hadri’s test for the series of CO2 emission and GDI variables are given in 

Table 6. The results from this test are coinciding with that of IPS tests. Generally 

speaking, the data series we are working with are all non-stationary or I(1) and working 

with such data without further tests might lead to spurious regression. 

Note that both IPS test and Hadri test use limits that involve T→∞ followed by N→∞, 

i.e. sequential asymptotic. If a panel dataset has a much larger time dimension than the 

unit dimension, this is justified (see, Hadri, 2000). Unfortunately, the dataset used here 

has N=T=50, but it is still better than Perman and Stern (2002) who used a smaller T than 

N and the IPS test. 

 

SECTION 4. FURTHER RESEARCH 

Based on the fact that the panel data sets of CO2 emission and GDP per capita have unit 

root, cointegration analysis is suggested before doing regression. Cointegration analysis 

is used to test the validity of model, when the data are integrated time series. As 

mentioned before, if the residual from a regression of integrated variables is also 

integrated, the distribution of the regression parameters is highly non-standard, and the 

interpretation of the model is meaningless. However, if the integrated variables share the 

same stochastic trend, the residual will be stationary. In this case, the variables are called 

to be cointegrated. In such cases, the model is useful in interpreting the relationship 

between variables.  

Because cointegration analysis is not the main part of this paper, here I will only briefly 

discuss tests for cointegration using panel data. 
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A popular test on the cointegration of time series data was proposed by Engle and 

Granger (1987). The two-step procedure using a linear model ttt xty εβγα +++= is: 

First, estimate the model and generate the residual series tε̂ ; then, construct 

“cointegrating regression augmented Dickey-Fuller” test (CRADF) as following: 

t
p

j jtjtt v+∆+=∆ ∑ = −− 11 ˆˆˆ εβεγε                          (15) 

If we cannot reject the null hypothesis thatγ equals zero against the alternative ofγ is 

greater than zero, which means, t
p

j jtjtt v+∆+= ∑ = −− 11 ˆˆˆ εβεαε , and α<1, then the series 

of tε̂ is stationary. Hence, yt and xt are cointegrated, and further regression can be 

performed. 

The same as unit root tests, cointegration tests to the individual series in a panel data set 

suffer from low power. In recent years, econometricians suggested some cointegration 

tests on dynamic panel. Also, such tests are divided into two catalogues by their 

hypotheses. One follows the idea of ADF test. The null hypothesis is the variables are 

cointegrated. Pedroni (1997a) describes in detail this method. The residual Pedroni 

procedure utilizes is generated by ititiiiit xty εβγα +++= . This model permits 

heterogeneous slope coefficients, fixed effects and individual specific deterministic 

trends. Pedroni constructs seven panel cointegration statistics, four of “within dimension” 

and three of “between-dimension”. For the within dimension tests, the null and 

alternative hypotheses are: 1:0 =iH δ , for all i, HA: δi=δ<1 for all i. For the between-

dimension tests, the null and alternative are 1:0 =iH δ , for all i, HA: δi <1 for all i. One 

statistic of each kind is based on ADF test. The rest are based on the unit root test 

suggested by Phillips and Perron (1988).  

The other category of panel cointegration tests shares the same idea with KPSS test. The 

null hypothesis of such tests is that the series is not cointegrated. LM-test is used in the 

analysis. The details of such tests are in McCoskey & Kao (1998). 
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SECTION 5: CONCLUSION 

Empirical work with time-series data needs to consider the properties of stationarity of 

data. If variables are characterized by a random walk, this may lead to “spurious 

regression”. The interpretation based on such analysis will be meaningless. However, this 

problem was omitted by previous empirical literature on CO2 emission-economic growth 

relationship. 

This paper first applies unit root tests to the individual series in the data set. ADF tests the 

null hypothesis of non-stationarity against the alternative of stationarity. When the 

constant term is included as the only exogenous variable, 40 out of 50 countries have 

integrated series for CO2, 44 out of 50 have integrated GDI per capita, – the integrated 

numbers of GDP per capita square and cube are both 44. When both constant and trend 

are included in the model, the numbers of the integrated series become 33, 44, 43 and 45, 

respectively. KPSS tests based on the null of stationarity report a similar output. 

Unit root tests were applied to the panel data to increase the power of the tests. IPS tests 

hypothesize that all the series in the panel are a random walk; the alternative is that at 

least one of the series is stationary. The statistics to the data set strongly support the 

argument that we cannot reject the null hypothesis of stationarity. Hadri’s tests are based 

on the null of stationarities of all the series. The large values of the statistics provide a 

resounding rejection of stationarity.  

The non-stationarity of the panel data set has been proved. Further cointegration analysis 

is required to test if the residual is stationary or not. If cointegration among the variables 

is rejected, the conclusions of the previous literature on CO2 emissions and economic 

growth would be refused. Future research is required to determine if this is truly the case. 
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Figure 1. Spurious Regression 
 
                        X, Y 
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Table 1. Descriptive Statistics of Balanced Panel Data 

Variables 
(in log) Mean Std. Dev Min Max 

CO2 
Emission -0.650 1.531 -4.605 2.393 

GDP 8.582 0.958 6.096 10.663 

GDI2 73.321 1.613 -4.605 1.581 

GDI3 627.83 2.476 6.184 10.490 
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Table 2. Augmented Dickey-Fuller tests for order of integration 
var CO2 GDI GDI2 GDI3 var CO2 GDI GDI2 GDI3 
# c c t c c t c c t c c t # c c t c c t c c t c c t 
1 I(1) I(1) I(1) I(1) I(1) I(1) I(0) I(0) 26 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 
P1 4 5 0 0 8 8 8 8 P26 0 0 8 8 0 0 1 1 
2 I(0) I(0) I(1) I(1) I(1) I(1) I(1) I(1) 27 I(1) I(0) I(1) I(1) I(0) I(0) I(1) I(1) 
P2 0 0 6 6 6 6 6 6 P27 8 8 0 0 1 1 4 4 
3 I(1) I(0) I(1) I(1) I(1) I(1) I(1) I(1) 28 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 
P3 7 5 8 8 8 8 8 8 P28 7 7 0 0 0 0 0 0 
4 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 29 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 
P4 0 0 8 8 0 0 0 0 P29 3 3 4 4 4 4 4 4 
5 I(1) I(0) I(1) I(1) I(0) I(0) I(0) I(0) 30 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 
P5 0 6 0 0 6 6 6 6 P30 7 7 8 8 8 8 8 8 
6 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 31 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 
P6 5 5 2 2 2 2 2 2 P31 6 2 0 0 7 7 8 8 
7 I(1) I(1) I(1) I(1) I(0) I(0) I(0) I(0) 32 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 
P7 1 6 1 1 6 6 6 6 P32 0 0 0 0 2 2 2 2 
8 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 33 I(0) I(0) I(1) I(1) I(1) I(1) I(1) I(1) 
P8 0 0 4 4 4 4 4 4 P33 0 0 0 0 0 0 0 0 
9 I(1) I(1) I(0) I(0) I(0) I(0) I(0) I(0) 34 I(0) I(0) I(1) I(1) I(1) I(1) I(1) I(1) 
P9 7 4 6 6 6 6 6 6 P34 1 2 4 4 4 4 4 4 
10 I(1) I(1) I(0) I(0) I(0) I(0) I(0) I(0) 35 I(1) I(0) I(1) I(1) I(1) I(1) I(1) I(1) 
P10 0 0 1 1 1 1 3 3 P35 5 7 0 0 4 4 4 4 
11 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 36 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 
P11 0 0 1 1 1 1 1 1 P36 0 0 1 1 1 1 1 1 
12 I(0) I(0) I(1) I(1) I(1) I(1) I(1) I(1) 37 I(1) I(0) I(1) I(1) I(1) I(1) I(1) I(1) 
P12 0 0 7 7 7 7 7 7 P37 1 1 4 4 4 4 4 4 
13 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 38 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 
P13 0 4 7 7 7 7 2 2 P38 0 0 2 2 4 4 4 4 
14 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 39 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 
P14 4 7 7 7 7 7 7 7 P39 0 0 8 8 8 8 8 8 
15 I(0) I(0) I(1) I(1) I(1) I(1) I(1) I(1) 40 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 
P15 0 0 8 8 8 8 8 8 P40 8 8 0 0 1 1 1 1 
16 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 41 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 
P16 0 0 0 0 5 5 5 5 P41 7 4 1 1 1 1 1 1 
17 I(0) I(0) I(1) I(1) I(1) I(1) I(1) I(1) 42 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 
P17 0 0 2 2 2 2 2 2 P42 0 4 1 1 4 4 4 4 
18 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 43 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 
P18 2 0 2 2 2 2 2 2 P43 4 8 7 7 7 7 7 7 
19 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 44 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 
P19 6 6 6 6 6 6 6 6 P44 7 7 7 7 7 7 7 7 
20 I(0) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 45 I(1) I(0) I(0) I(0) I(1) I(1) I(1) I(1) 
P20 0 3 4 4 4 4 8 8 P45 2 2 1 1 1 1 1 1 
21 I(0) I(0) I(1) I(1) I(1) I(1) I(1) I(1) 46 I(1) I(0) I(1) I(1) I(1) I(1) I(1) I(1) 
P21 0 0 6 6 6 6 6 6 P46 4 8 0 0 0 0 5 5 
22 I(1) I(0) I(0) I(0) I(1) I(1) I(1) I(1) 47 I(0) I(0) I(1) I(1) I(1) I(1) I(1) I(1) 
P22 6 0 1 1 1 1 5 5 P47 2 2 0 0 0 0 0 0 
23 I(1) I(1) I(0) I(0) I(1) I(1) I(1) I(1) 48 I(1) I(1) I(1) I(1) I(0) I(0) I(0) I(0) 
P23 0 0 4 4 4 4 4 4 P48 5 4 0 0 6 6 6 6 
24 I(1) I(0) I(1) I(1) I(1) I(1) I(1) I(1) 49 I(1) I(1) I(1) I(1) I(0) I(0) I(1) I(1) 
P24 6 8 4 4 4 4 4 4 P49 2 0 0 0 5 5 2 2 
25 I(1) I(0) I(1) I(1) I(1) I(1) I(1) I(1) 50 I(0) I(1) I(0) I(0) I(1) I(1) I(1) I(1) 
P25 0 5 4 4 4 4 4 4 P50 0 7 1 1 0 0 0 0 
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Table 3. Adjustment to Augmented Dickey-Fuller tests for Some CO2 Emissions 

CO2 emission 
country 

exogenous 
variables lag-terms I(n)

3 c t 5 I(0)
5 c t 6 I(0)
20 c t 3 I(1)
22 c  6 I(1)
24 c t 8 I(0)
25 c t 5 I(0)
27   8 I(0)
35  t 8 I(1)
37 c t 1 I(0)
45 c t 2 I(0)
46 c t 8 I(0)
50   7 I(1)
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Table 4. Augmented Dickey-Fuller tests for order of integration 
var CO2  GDI  GDI2  GDI3  var CO2 GDI GDI2 GDI3 
# c c t c c t c c t c c t # c c t c c t c c t c c t 
1 I(1) I(1) I(1) I(1) I(1) I(1) I(0) I(0) 26 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 
2 I(0) I(0) I(1) I(1) I(1) I(1) I(0) I(0) 27 I(1) I(0) I(1) I(1) I(0) I(0) I(1) I(1) 
3 I(1) I(0) I(1) I(1) I(1) I(1) I(1) I(1) 28 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 
4 I(1) I(1) I(1) I(1) I(0) I(0) I(1) I(1) 29 I(1) I(1) I(1) I(1) I(1) I(1) I(0) I(0) 
5 I(1) I(0) I(1) I(1) I(0) I(0) I(0) I(0) 30 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 
6 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 31 I(1) I(1) I(1) I(1) I(1) I(1) I(0) I(0) 
7 I(1) I(1) I(1) I(1) I(0) I(0) I(0) I(0) 32 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 
8 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 33 I(0) I(0) I(1) I(1) I(1) I(1) I(1) I(1) 
9 I(1) I(1) I(0) I(0) I(0) I(0) I(0) I(0) 34 I(0) I(0) I(1) I(1) I(1) I(1) I(1) I(1) 

10 I(1) I(1) I(0) I(0) I(0) I(0) I(0) I(0) 35 I(1) I(0) I(1) I(1) I(0) I(0) I(0) I(0) 
11 I(1) I(1) I(1) I(1) I(1) I(1) I(0) I(0) 36 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 
12 I(0) I(0) I(1) I(1) I(1) I(1) I(1) I(1) 37 I(1) I(0) I(1) I(1) I(1) I(1) I(1) I(1) 
13 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 38 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 
14 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 39 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 
15 I(0) I(0) I(1) I(1) I(1) I(1) I(0) I(0) 40 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 
16 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 41 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 
17 I(0) I(0) I(1) I(1) I(1) I(1) I(1) I(1) 42 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 
18 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 43 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 
19 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 44 I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 
20 I(0) I(1) I(1) I(1) I(0) I(0) I(0) I(0) 45 I(1) I(0) I(0) I(0) I(1) I(1) I(1) I(1) 
21 I(0) I(0) I(1) I(1) I(1) I(1) I(1) I(1) 46 I(1) I(0) I(1) I(1) I(1) I(1) I(0) I(0) 
22 I(1) I(0) I(0) I(0) I(1) I(1) I(1) I(1) 47 I(0) I(0) I(1) I(1) I(1) I(1) I(0) I(0) 
23 I(1) I(1) I(0) I(0) I(1) I(1) I(1) I(1) 48 I(1) I(1) I(1) I(1) I(0) I(0) I(0) I(0) 
24 I(1) I(0) I(1) I(1) I(1) I(1) I(1) I(1) 49 I(1) I(1) I(1) I(1) I(0) I(0) I(1) I(1) 
25 I(1) I(0) I(1) I(1) I(1) I(1) I(1) I(1) 50 I(0) I(1) I(0) I(0) I(1) I(1) I(1) I(1) 
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Table 5. IPS Tests to the Panel Data 
Exogenous 
variables CO2  emission GDI GDI2 GDI3 

C 1.576 2.432 3.241 1.198 
C,T -0.235 1.937 -0.095 2.257 

Conclusion Cannot reject H0 Cannot reject H0 Cannot reject H0 Cannot reject H0 
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Table 6. Hadri’s Tests to the Panel Data 
Exogenous 
variables 

CO2  
emission GDI GDI2 GDI3 

 C 530.61 618.23 627.00 634.81 
C,T 137.78 140.54 137.83 133.86 
Conclusion Reject H0 Reject H0 Reject H0 Reject H0 
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Appendix I. The List of the Countries 
Argentina France Mexico Sri Lanka 
Australia Guatemala Morocco Switzerland 
Belgium Guyana Netherlands Thailand 
Bolivia Honduras New Zealand Turkey 
Brazil Iceland Nicaragua Uganda 
Canada India Nigeria United Kindom 
Colombia Ireland Norway USA 
Costa Rica Israel Paraguay Uruguay 
Denmark Italy Peru Venezuela 
Egypt Japan Philippines Panama 
El Salvador Kenya Portugal Spain 
Ethiopia Luxembourg South Africa  
Finland Mauritius Trinidad and Tobago 
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Appendix II. Some Time Series Definitions: 

A. Stationary 

 A time series {yt} is “weakly stationary”, or “covariance stationary” if the mean 

and variance of it are constant over time and the covariance of any sub-series of 

the original series are function of the difference between the two time points we 

choose the sub-series instead of the exact places of the points themselves.  

B. Order of Integration  

A series is said to be integrated of order d or I(d) if after being differenced d 

times it becomes stationary. 

C. Cointegration 

Suppose {xt}, {yt} are both I(d) If there exists a linear combination,      zt 

=axt+byt which is I(d-c); c>0, then {xt}and{yt} are said to be “cointegrated. 
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Appendix Table 1. Augmented Dickey-Fuller tests for order of integration I(2) 
var CO2 GDI GDI2 GDI3  var CO2 GDI GDI2 GDI3 
# c c t c c t c c t c c t  # c c t c c t c c t c c t 
1 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0)  26 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 
P1 3 3 1 1 1 1 5 5  P26 0 1 7 7 0 0 0 0 
2 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0)  27 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 
P2 0 0 5 5 5 5 5 5  P27 0 0 0 0 3 3 3 3 
3 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0)  28 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 
P3 4 6 7 7 7 7 7 7  P28 8 6 0 0 0 0 0 0 
4 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0)  29 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 
P4 7 7 7 7 0 0 0 0  P29 2 2 7 7 3 3 3 3 
5 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0)  30 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 
P5 0 0 0 0 5 5 8 8  P30 0 6 7 7 7 7 7 7 
6 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0)  31 I(0) I(0) I(1) I(1) I(1) I(1) I(1) I(1) 
P6 4 8 1 1 1 1 1 1  P31 1 1 8 8 8 8 8 8 
7 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0)  32 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 
P7 0 0 0 0 0 0 0 0  P32 0 1 0 0 1 1 1 1 
8 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0)  33 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 
P8 0 0 3 3 3 3 8 8  P33 0 0 0 0 0 0 0 0 
9 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0)  34 I(0) I(0) I(0) I(0) I(1) I(1) I(1) I(1) 
P9 3 6 0 0 8 8 8 8  P34 0 0 6 6 8 8 8 8 
10 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0)  35 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 
P10 8 8 0 0 0 0 1 1  P35 6 7 1 1 3 3 3 3 
11 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0)  36 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 
P11 0 0 0 0 0 0 0 0  P36 0 0 0 0 0 0 0 0 
12 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0)  37 I(0) I(0) I(0) I(0) I(1) I(1) I(1) I(1) 
P12 1 1 6 6 6 6 6 6  P37 0 0 6 6 8 8 8 8 
13 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0)  38 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 
P13 5 3 6 6 6 6 1 1  P38 0 0 4 4 3 3 3 3 
14 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0)  39 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 
P14 6 3 6 6 6 6 6 6  P39 0 0 7 7 7 7 7 7 
15 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0)  40 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 
P15 0 0 7 7 7 7 8 8  P40 8 7 0 0 0 0 0 0 
16 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0)  41 I(1) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 
P16 1 1 0 0 0 0 4 4  P41 6 3 6 6 6 6 6 6 
17 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0)  42 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 
P17 0 0 1 1 1 1 0 0  P42 7 0 0 0 3 3 3 3 
18 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0)  43 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 
P18 1 1 1 1 1 1 1 1  P43 3 3 6 6 6 6 6 6 
19 I(0) I(0) I(1) I(1) I(1) I(1) I(0) I(0)  44 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 
P19 2 0 5 5 5 5 5 5  P44 6 6 6 6 6 6 6 6 
20 I(0) I(0) I(0) I(0) I(1) I(1) I(1) I(1)  45 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 
P20 2 6 0 0 6 6 6 6  P45 0 0 0 0 0 0 1 1 
21 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0)  46 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 
P21 0 0 5 5 5 5 5 5  P46 3 3 0 0 0 0 0 0 
22 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0)  47 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 
P22 5 0 0 0 0 0 4 4  P47 0 0 0 0 0 0 0 0 
23 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0)  48 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 
P23 0 4 1 1 3 3 7 7  P48 4 4 0 0 7 7 7 7 
24 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0)  49 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 
P24 2 2 3 3 3 3 3 3  P49 1 1 0 0 0 0 0 0 
25 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0)  50 I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 
P25 0 0 3 3 3 3 3 3  P50 4 4 7 7 7 7 7 7 
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